

Mr. Jason Pelton Project Manager New York State Department of Environmental Conservation Remedial Bureau D 625 Broadway Albany, NY 12233-7015

Arcadis of New York, Inc.
Two Huntington Quadrangle
Suite 1S10
Melville
New York 11747
Tel 631 249 7600

Fax 631 249 7610 www.arcadis.com

Subject:

2019 Annual Summary Report for the Bethpage Park Soil Gas Containment System (BPSGCS), Operable Unit 3 (OU3; Former Grumman Settling Ponds), Bethpage, New York, NYSDEC Site #1-30-003A

Date:

March 30, 2020

Contact:

Christopher Engler

Phone:

315.409.6579

Email:

christopher.engler@arcadis.

com

Our ref: 30037970

Dear Jason:

Enclosed is one electronic PDF copy of the 2019 Annual Summary Report for the BPSGCS operation and monitoring, performed in accordance with the NYSDEC-approved OU3 Soil Gas IRM OM&M Manual (Arcadis 2016) and the NYSDEC-approved Sampling and Analysis Plan (SAP; Arcadis 2016). As we have transitioned to electronic submittals (via PDF) in line with NYSDEC's paper reduction program, hard copies of the report can be provided on request.

If you have any questions, please do not hesitate to contact me.

Sincerely,

Arcadis of New York, Inc.

aratadis S. Englis

Christopher Engler PE

Vice President

Enclosure

Copies:

Ed Hannon, Northrop Grumman
Donald Hesler, NYSDEC
Steven Karpinski, NYS Dept. of Health
John Lovejoy, Nassau County Dept. of Health
Carlo San Giovanni, Arcadis
Nidal Azzam, USEPA
Carol Stein, USEPA
Public Repository
File

Northrop Grumman Systems Corporation

2019 ANNUAL SUMMARY REPORT

Operation, Maintenance, and Monitoring Report for the Bethpage Park Soil Gas Containment System

Operable Unit 3 (Former Grumman Settling Ponds)
Bethpage, New York
NYSDEC ID # 1-30-003A

March 30, 2020

elllin Rhynge,

Albina Redzepagic Task Manager

Christopher Engler, PE

Engineer of Record | New York PE-069748

Asidoplas S. Engles

Carlo Son Giovann.

Carlo San Giovanni Project Manager

2019 ANNUAL SUMMARY REPORT

Operation, Maintenance, and Monitoring Report for the Bethpage Park Soil Gas Containment System

Operable Unit 3 (Former Grumman Settling Ponds), Bethpage, New York NYSDEC ID # 1-30-003A

Prepared for:

Northrop Grumman Systems Corporation

Prepared by:

Arcadis of New York, Inc.

Two Huntington Quadrangle

Suite 1S10

Melville

New York 11747

Tel 631 249 7600

Fax 631 249 7610

Our Ref.:

30037970

Date:

March 30, 2020

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

1	Introduction	1
2	Bethpage Park Soil Gas Containment System Objectives	2
3	Bethpage Park Soil Gas Containment System Description	2
4	Operation and Maintenance Activities	3
	4.1 Summary of O&M Completed During the Annual Reporting Period	3
	4.2 Performance Evaluation	4
	4.3 Conclusions and Recommendations for O&M	4
5	Monitoring	4
	5.1 Summary of Monitoring Completed	4
	5.2 Summary of Monitoring Results	5
	5.2.1 Containment System Performance Monitoring	5
	5.2.1.1 Annual Reporting Period System Operating Parameters	5
	5.2.1.2 Vapor Screening	5
	5.2.2 Containment System Compliance Monitoring	5
	5.2.2.1 System Operating Parameters	5
	5.2.2.2 Vapor Sample	5
	5.2.2.3 Condensate Sample	6
	5.2.3 Air Emissions Model	6
6	Conclusions and Recommendations	7
	6.1 Conclusions.	7
	6.2 Recommendations	8
7	Certification	9
8	References	10

TABLES

Table 1	General System Operating Parameters
Table 2	Induced Vacuum Readings at Compliance Monitoring Points
Table 3	Total Effluent Vapor Sample Analytical Results
Table 4	Total Effluent Vapor Sample Analytical Results, Tentatively Identified Compounds
Table 5	Air Quality Impacts Analysis

FIGURES

Figure 1	Site Location Map
Figure 2	General Site Plan and Monitoring Well Vacuum Measurements, Bethpage Park Soil Gas Containment System Annual 2019
Figure 3	Process Flow Diagram, Bethpage Park Soil Gas Containment System
Figure 4	Soil Gas TVOC Concentrations
Figure 5	Cumulative Total, Project and Non-Project VOC Mass Removed
Figure 6	VOC Mass Recovery Rates

1 INTRODUCTION

Pursuant to the Administrative Order on Consent (AOC) Index #W1-0018-04-01 (New York State Department of Environmental Conservation [NYSDEC] 2005) and the Operable Unit 3 (OU3) Record of Decision (NYSDEC 2013), Arcadis of New York, Inc. (Arcadis), on behalf of Northrop Grumman Systems Corporation (Northrop Grumman), has prepared this OU3 Bethpage Park Soil Gas Containment System (BPSGCS) Annual Summary Report for submittal to the NYSDEC. The present-day Bethpage Community Park property (Park) and Plant 24 Access Driveway, which the NYSDEC has termed the "Former Grumman Settling Ponds Area" and designated as OU3, are referred to herein as the Site Area. Figure 1 provides a Site Area location map.

The BPSGCS (previously referred to as the Soil Gas Interim Remedial Measure [IRM]) has operated since February 18, 2008. The operation, maintenance, and monitoring (OM&M) activities performed during 2019 (i.e., January 1 through December 31, 2019 [the "annual reporting period"]) are summarized in this Annual Summary Report. Data summaries for the previous three 2019 operational quarterly periods are available in the following letter reports:

- Results of 2019 First Quarter Operation and Monitoring for the Bethpage Park Soil Gas Containment System, May 2019 (Arcadis 2019a)
- Results of 2019 Second Quarter Operation and Monitoring for the Bethpage Park Soil Gas Containment System, August 2019 (Arcadis 2019b)
- Results of 2019 Third Quarter Operation and Monitoring for the Bethpage Park Soil Gas Containment System, November 2019 (Arcadis 2019c)

During 2019, the BPSGCS system OM&M was conducted in accordance with the NYSDEC-approved OU3 Soil Gas IRM OM&M Manual (Arcadis 2016) and the NYSDEC-approved Sampling and Analysis Plan (SAP) (Arcadis 2016).

As discussed in the Remedial Investigation Report (RI Report), [Arcadis 2011], Northrop Grumman does not take responsibility for certain compounds (e.g., Freon 12 and Freon 22) present in the Site Area. Throughout this report, a distinction is made between the "Project" and "Non-project" volatile organic compounds (VOCs), which are defined as follows:

- <u>Project VOCs</u>: VOCs that may be related to former Northrop Grumman historical activities. For this report, Project VOCs include 1,1,1-trichloroethane; 1,1-dichloroethane; 1,2-dichloroethane; 1,1-dichloroethene; tetrachloroethene; trichloroethylene; vinyl chloride; cis-1,2-dichloroethene; trans-1,2-dichloroethene; benzene; toluene; and total xylenes.
- Non-project VOCs: VOCs, such as Freon 12 and Freon 22, which are understood to be unrelated to
 former Northrop Grumman activities but have been detected in the Site Area. As noted in the RI
 Report, a groundwater sub-plume of Freon 22 has been identified originating from the area of the
 Town of Oyster Bay's (Town's) former ice rink. Based on Town information (Zervos 2007), Freon 22
 was used by the Town and released to the environment.

2 BETHPAGE PARK SOIL GAS CONTAINMENT SYSTEM OBJECTIVES

The remedial action objectives (RAOs) of the BPSGCS are as follows:

- To mitigate the off-site migration of Project VOCs in the on-site soil gas through the implementation of a soil gas containment system installed along the Plant 24 Access Driveway and McKay Field Access Road, south and west of the Park, respectively, and;
- To comply with applicable NYSDEC Standards, Criteria, and Guidelines (SCGs)

The compliance objectives of the BPSGCS are as follows:

- To mitigate the off-site migration of soil gas, the system was designed to maintain

 -0.1 inch of water column (iwc) within a negative pressure curtain established within the vadose zone along the Plant 24 Access Driveway and along the McKay Field Access Road, from the boundary of the Plant 24 Access Driveway to approximately 400 feet north along the MacKay Field Access Road, based on a 12-month rolling average.
- To treat extracted vapors until it is demonstrated that all VOCs in the influent (untreated) vapor stream are present at concentrations lower than the NYSDEC Division of Air Resources Guide-1 (DAR-1) Annual Guidance Concentrations (AGCs) on a 12-month rolling average and Short-term Guidance Concentrations (SGCs) for any given grab sample (NYSDEC 2016). On December 29, 2008, NYSDEC approved removal of vapor phase treatment (NYSDEC 2008).
- To manage condensate via one of the following two methods: (1) collect and convey condensate to
 the Town of Oyster Bay's Cedar Creek treatment facility via the Nassau County Department of Public
 Works (NCDPW) sanitary sewer, in accordance with the requirements set forth by the NCDPW
 (NCDPW 2007, 2008), or (2) collect and convey to the Bethpage Park Groundwater Containment
 System (BPGWCS) treatment system that discharges treated groundwater to the NCDPW recharge
 basins west of the site.

3 BETHPAGE PARK SOIL GAS CONTAINMENT SYSTEM DESCRIPTION

Following review and approval of the Soil Gas IRM 95% Design Report and Design Drawings by the NYSDEC (Arcadis 2007b), the design package was finalized and the BPSGCS constructed. A general site plan (Figure 2) shows the treatment building, which houses the major process equipment, including two 20-horsepower (hp) and one 30 hp regenerative-type depressurization blowers, and three 52-gallon moisture separators and associated transfer pumps. Remaining system components are located outside the treatment building and include one 35.65-foot tall by 16-inch diameter effluent stack, one heat exchanger, the 18 depressurization wells, and the 47 induced vacuum monitoring wells, also shown on Figure 2. Monitoring well vacuum measurements collected during 2019 are also provided on Figure 2. A process flow diagram that shows sampling and monitoring locations is provided as Figure 3. A detailed

description of the system and a complete set of record drawings are provided in the OM&M Manual (Arcadis 2016).

4 OPERATION AND MAINTENANCE ACTIVITIES

The following sections summarize the routine and non-routine operation and maintenance (O&M) activities completed during the annual reporting period (Section 4.1); the performance evaluation of the BPSGCS (Section 4.2); and the conclusions and recommendations regarding O&M for the BPSGCS (Section 4.3).

4.1 Summary of O&M Completed During the Annual Reporting Period

The O&M of the BPSGCS was conducted in accordance with the OM&M Manual (Arcadis 2016a), and consisted of the following routine maintenance/activities:

- Continuous monitoring of system performance parameters by the Supervisory Control and Data Acquisition (SCADA) system.
- Weekly site checks to monitor and record key process parameters to evaluate system operation, to
 assess whether a process parameter has changed or is out of range, and to provide information that
 may be helpful to identify and/or troubleshoot an operational concern.
- Quarterly monitoring events to monitor and record key process parameters (including induced vacuums), to confirm proper system operation, make adjustments as needed, and to collect vapor samples to demonstrate operational compliance. A summary of the quarterly monitoring data collected for the BPSGCS is provided in Tables 1, 2, 3 and 4.
- Routine maintenance of equipment was generally performed in accordance with the manufacturers' specifications as needed.
- Maintenance of equipment and system components in response to alarm conditions or system
 parameters operating outside of their normal operating ranges. These conditions did not have a
 significant impact on system performance and have been proactively addressed to minimize system
 downtime.

During the annual reporting period, condensate removal was conducted during routine BPSGCS maintenance. Collected condensate was treated at the BPGWCS and discharged along with the treated groundwater to the NCDPW recharge basins west of the site. As of 2015, condensate removal is conducted, as needed, by manipulating manifold vacuums and flow rates for brief periods of time. This process does not entirely vacate the below grade lines of condensate, though it enables the system to maintain adequate flow and vacuum at the manifolds without requiring a vacuum truck and a full day shutdown event.

The following non-routine activities occurred during the annual reporting period:

 Non-routine system shutdown from July 16 to July 18, 2019 shutdown due to failed power supply and equipment calibrations.

4.2 Performance Evaluation

The OU3 BPSGCS operated continuously during the annual reporting period with the exception of brief shutdown events for routine and non-routine system maintenance. An operational summary of the depressurization wells, monitoring wells, flow rates and vacuums for the annual reporting period are provided in Tables 1 and 2. In summary:

- The system operated during the annual reporting period for approximately 363 days out of a total 365 days (99.5% uptime).
- An annual rolling average vacuum of -0.1 iwc or greater was maintained at all induced vacuum
 monitoring points throughout the annual reporting period. Data recorded at several wells indicated that
 vacuum induced at the well heads was slightly less than the targeted -0.1 iwc, during November 2019.
 Northrop Grumman will continue to proactively manage this issue through condensate removal and
 system rebalancing of the manifold flow.

4.3 Conclusions and Recommendations for O&M

The O&M activities conducted during the annual reporting period met the requirements of the O&M Manual.

5 MONITORING

The following sections summarize the monitoring completed during the annual reporting period (Section 5.1); the 2019 monitoring data, comparisons of the results with applicable AGCs and SGCs, and additional data evaluations describing the performance effectiveness of the OU3 BPSGCS (Section 5.2); and the conclusions and recommendations regarding monitoring for the Site (Section 5.3).

5.1 Summary of Monitoring Completed

In general, the monitoring of the OU3 BPSGCS was completed in accordance with the OU3 BPSGCS OM&M Manual (Arcadis 2016). A summary of the monitoring completed during this annual reporting period is provided below:

- Quarterly system performance monitoring:
 - Instantaneous vacuum measurements at compliance measurement points and system operating measurements at influent manifolds, blower inlet and outlet, and system effluent were collected to assess the system performance. Summaries of the measurements are provided in Tables 1 and 2.
- Quarterly system compliance monitoring:

 Containment system air quality monitoring was completed to monitor the performance of the containment system and to compare the levels to applicable AGCs and SGCs. Summaries of the results are provided in Tables 3, 4, and 5.

5.2 Summary of Monitoring Results

5.2.1 Containment System Performance Monitoring

5.2.1.1 Annual Reporting Period System Operating Parameters

System operating parameters measured during the annual reporting period are summarized in Tables 1 and 2. The system components generally operated within their recommended ranges during the annual reporting period.

5.2.1.2 Vapor Screening

The total effluent screening level vapor samples (i.e., photoionization detector [PID] reading) measured during the annual reporting period are provided in Table 1. The screening results were non-detect throughout the annual reporting period.

5.2.2 Containment System Compliance Monitoring

5.2.2.1 System Operating Parameters

Instantaneous vacuum measurements in compliance monitoring wells from the annual reporting period and annual time-weighted rolling averages are summarized in Table 2. Quarterly vacuum measurement data from the annual reporting period are also shown on Figure 2.

As shown on Table 2, during the annual reporting period, the instantaneous induced vacuum at all compliance-related monitoring points met or exceeded the minimum performance standard (greater than or equal to -0.1 iwc), with the exceptions of VMWC-14A, VMWC-15D, VMWC-18A, and VMWC-18B. Although these instantaneous induced vacuum measurements were slightly lower than -0.1 iwc, the annual time-weighted rolling average of induced vacuum readings at all compliance-related monitoring points were maintained at greater than or equal to -0.1 iwc. Therefore, the BPSGCS is meeting the operational compliance objectives.

5.2.2.2 Vapor Sample

Effluent vapor samples were collected on a quarterly basis throughout the annual reporting period. The total volatile organic compound (TVOC) concentrations ranged from 240 micrograms per cubic meter ($\mu g/m^3$) in November 2019 to 758 $\mu g/m^3$ in June 2019, as shown in Table 3. The Project TVOC concentrations ranged from 207 $\mu g/m^3$ in November 2019 to 632 $\mu g/m^3$ in June 2019. The Non-project TVOC concentrations ranged from 33 $\mu g/m^3$ in November 2019 to 187 $\mu g/m^3$ in March 2019.

The TVOC concentration in effluent vapor has generally declined since system startup. Figure 4 provides an overview of the concentration trend over the report period. During the reporting period the containment system has removed 18.9 pounds of TVOCs, with 14.7 pounds of Project TVOCs (77.8%) and 4.2 pounds of Non-project TVOCs (22.2%). The containment system has removed a total of 379.2 pounds of TVOCs, 302.2 pounds of Project TVOCs (79.7%), and 77.0 pounds of Non-project TVOCs (20.3%) since startup in February 18, 2008, as shown on Figure 5. Figure 6 presents the mass removal rate, which has declined since system startup.

Benzene, carbon tetrachloride, trichloroethene (trichloroethylene) and vinyl chloride, classified as environmentally "A"-rated compounds as defined in DAR-1 AGC/SGC tables (NYSDEC 2016), were detected in the effluent vapor sample during the annual reporting period and the concentrations were consistent with historical data.

The concentrations of the tentatively identified compounds (TICs) were consistent with data collected throughout previous annual reporting periods. A total of 2 TICs were identified during the annual reporting period as shown in Table 4. The most common TIC identified over the annual reporting period was carbon dioxide.

5.2.2.3 Condensate Sample

Collection of a compliance monitoring condensate sample was not required during the annual reporting period as all condensate was transferred to the BPGWCS system for treatment.

5.2.3 Air Emissions Model

Vapor concentrations for the annual period were compared with the degree of cleaning required pursuant to 6NYCRR III A Part 212-2.3(b) (Rule 212), Table 4 - Degree of Air Cleaning Required for Non-Criteria Air Contaminants. Concentrations of all compounds detected during the Fourth Quarter were less than 13,934 µg/m³ (concentration equivalent to 0.1 pounds per hour at a flow rate of 1,920 cubic feet per minute), as shown in Table 5 of this report. Therefore, in accordance with the requirements of Table 4 of the NYSDEC regulations, air dispersion modeling was performed to demonstrate that the maximum off-site air concentration is less than the NYSDEC DAR-1 AGC/SGC values issued August 10, 2016.

The U.S. Environmental Protection Agency (USEPA) air quality dispersion model AERMOD was executed to estimate the highest ambient air concentration of the compounds detected during the Fourth Quarter. AERMOD is the USEPA's recommended best state-of-the-art practice Gaussian plume dispersion model. Gaussian models are the most widely used techniques for estimating the impact of non-reactive pollutants, per Appendix W of Title 40 Code of Federal Regulations (CFR) 51 – Guideline of Air Quality Models.

The following parameters were used for the AERMOD model analysis:

- Urban dispersion coefficients
- AERMAP base and terrain elevations, processed using National Elevation Dataset (NED) digitized terrain data

- Surface and upper air observations measured at the Nation Weather Service stations located at
 Farmingdale and Brookhaven airports for calendar years 2011-2015, in accordance with NYSDEC's
 DAR-10 Air Dispersion Modeling Guidance Document. This longer period of time was reviewed for
 the model run, to provide a conservative estimate of atmospheric impacts on the off-site
 concentrations.
- Discrete receptor grids, per the following methodology:
 - Receptors were located along the property boundary at distances not exceeding 25 meters;
 - A 1.5 km x 1.5 km Cartesian grid receptors with distances of 50 meters between the receptors;
 and
 - A 3.0 km x 3.0 km Cartesian grid receptors with distances of 100 meters between the receptors.
- Emission rate: 1 gram per second (g/s)

Vapor concentrations for the annual period were compared to 6NYCRR III A Part 212-2.3(b), Table 4 – Degree of Air Cleaning Required for Non-Criteria Air Contaminants. Concentrations of all compounds detected during the Fourth Quarter were less than 13,934 μ g/m3 (concentration equivalent to 0.1 pounds per hour at a flow rate of 1,920 cubic feet per minute), as shown in Table 5 of this report. In accordance with the requirements of Table 4 of the NYSDEC regulations, air dispersion modeling was performed to demonstrate that the maximum off-site air concentration is less than the NYSDEC DAR-1 AGC/SGC values, issued August 10, 2016.

Based on the ambient modeling analysis conducted in the annual reporting period, the BPSGCS continues to meet all of the requirements for DAR-1 and is below the Rule 212 requirements without add on controls (i.e. vapor phase GAC treatment).

6 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The following conclusions are provided regarding the performance and ability of the OU3 BPSGCS to comply with the remedial action and compliance objectives:

- OM&M requirements of the OU3 BPSGCS OM&M Manual were met during the annual reporting period.
- The BPSGCS generally operated as designed during the annual reporting period to mitigate the off-site migration of soil gas.
 - The BPSGCS operated continuously with the exception of brief shutdown periods for routine and non-routine maintenance (99.5% uptime).
 - A total of 18.9 pounds of VOCs were removed from the subsurface during the annual reporting period, and a total of 379.2 pounds of VOCs were removed since system startup in 2008.

- O An annual rolling average vacuum of -0.1 iwc or greater was maintained at all induced vacuum monitoring points throughout the annual reporting period. Data recorded at some wells indicated that vacuum induced at the well heads was slightly less than the targeted -0.1 iwc, during March and November 2019. Northrop Grumman will continue to proactively manage this issue through condensate removal and system rebalancing of the manifold flow.
- The operation of the BPSGCS complied with applicable NYSDEC SCGs during the annual reporting period.
- Effluent vapor emissions met applicable AGC and SGC air discharge criteria during the annual reporting period. Based on the ambient modeling analysis conducted in the annual reporting period, the BPSGCS continues to meet all of the requirements for DAR-1 and is below the Rule 212 requirements without add on controls (i.e. vapor phase GAC treatment).

6.2 Recommendations

Based on the information provided herein, Arcadis recommends to continue operation of the BPSGCS, to maintain compliance with the RAOs. No modifications or upgrades are needed at this time.

7 CERTIFICATION

Statement of Certification

On behalf of Northrop Grumman Systems Corporation, I hereby certify and attest that the Operable Unit 3 Bethpage Park Soil Gas Containment System is operated in compliance with the remedial action objectives provided within the NYSDEC approved Soil Gas Interim Remedial Measure Work Plan (Arcadis 2007a), which was prepared pursuant to NYSDEC Administrative Order on Consent Index # W1-0018-04-01 (NYSDEC 2005) referencing the Former Grumman Settling Ponds Site and dated July 4, 2005.

Christopher Engler, P.E. Engineer of Record

aristophy D. Engles

License # 069748

8 REFERENCES

- Arcadis of New York, Inc. 2007a. Operable Unit 3 Soil Gas Interim Remedial Measure Work Plan, Former Grumman Settling Ponds, Bethpage, New York, Site #1-30-003A. February 16, 2007.
- Arcadis of New York, Inc. 2007b. 95% Design Report, Operable Unit 3 Soil Gas Interim Remedial Measure, Former Grumman Settling Ponds, Bethpage, New York, Site #1-30-003A. September 7, 2007.
- Arcadis of New York, Inc. 2016 Operable Unit 3, Operation, Maintenance, and Monitoring Manual, Bethpage Park Soil Gas Containment System (Formerly Soil Gas Interim Remedial Measure), Former Grumman Settling Ponds, Bethpage, New York, Site #1-30-003A. Revision 3: March 17, 2016.
- Arcadis of New York, Inc. 2011.Remedial Investigation Report (Site Area), Operable Unit 3 (Former Grumman Settling Ponds), Bethpage, New York, Site #1-30-003A. Revised: February 8, 2011.
- Arcadis of New York, Inc. 2019a. Results of First Quarter 2019 Operation and Monitoring for the Bethpage Park Soil Gas Containment System, Operable Unit 3 (Former Grumman Settling Ponds), Bethpage, New York, Site #1-30-003A.
- Arcadis of New York, Inc. 2019b. Results of Second Quarter 2019 Operation and Monitoring for the Bethpage Park Soil Gas Containment System, Operable Unit 3 (Former Grumman Settling Ponds), Bethpage, New York, Site #1-30-003A.
- Arcadis of New York, Inc. 2019c. Results of Third Quarter 2019 Operation and Monitoring for the Bethpage Park Soil Gas Containment System, Operable Unit 3 (Former Grumman Settling Ponds), Bethpage, New York, Site #1-30-003A.
- County of Nassau Department of Public Works (NCDPW). 2007. Letter Regarding Discharge of IRM Condensate Water, Northrop Grumman, OU3 Site, Bethpage, New York. October 16, 2007.
- NCDPW. 2008. Letter Regarding Discharge of IRM Condensate Water Northrop, Grumman, OU3 Site, Bethpage, New York. September 17, 2008.
- New York State Department of Environmental Conservation (NYSDEC). 2005. Order on Consent Index #WI-0018-04-01, Site # 1-30-003A. July 4, 2005.
- NYSDEC. 2008. Letter of Approval For Proposed Modifications. December 12, 2008.
- NYSDEC. 2013. Record of Decision. Northrop Grumman Bethpage Facility, Operable Unit Number: 03, State Superfund Project, Bethpage, Nassau County, Site #1-30-003A. March, 2013.
- NYSDEC. 2016. DAR-1 AGC/SGC Tables. Revised August 10, 2016.
- Zervos, Theodore. 2007. Deposition of Theodore Zervos in the matter Town of Oyster Bay v. Northrop Grumman Systems Corporation et al. Case No. 05-CV-1945 (TCP)(AKT). January 22, 2007.

TABLES

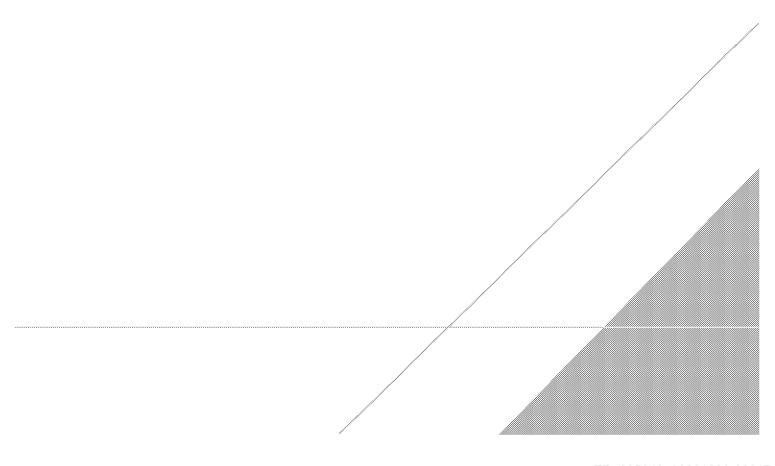


Table 1
General System Operating Parameters
Bethpage Park Soil Gas Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Bethpage, New York

	DW-	75 Param	elers	DW-	Ø Param	arara	DW-	68 Param	eions	8)77	SD Param	CIGIS	DW4	SS Param	SIGIS .	DWs	SD Param	erers	B V/V	.68 Param	oters	DVV-S	D Parame	(G) (S)
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Valliteary	2		24 H	low Rate at Manifold	Namfola Namfola	Mellines/	low Rate at Mamifold	Manufacture Manufa	Wellnead	Tow Rate at	Man for a	Validition	2 4 2 4 2 5 2 5	Mental Management	Wallnesd	Par Rate at Mentitora	1 C C C C C C C C C C C C C C C C C C C	10 Co	2 C C C C C C C C C C C C C C C C C C C		
Date	3000	5.5	10.70	estin	5 E	luv c	S S S Softn	5 E	lerc	3 E	ē S i₩¢	196	Selfer	ive	lw.	A G Q Q Q	5.5		Selfa	iwc	200			
3/20/19	77	-19	-1.4	6.0	-24.0	-0.36	17.0	-7.5	-0.38	8.0	-11.0	-0.39	53	-18.0	-0.73	15	-9	-2.4 ⁽⁴⁾	85	-17	-1.8	8.0	-6.0	-1.4 ⁽³⁾
6/27/19	100	-18	-1.8	7.0	-7.0	-0.52	7.0	-5.0	-0.27	12.0	-9.0	-0.47	71	-11.5	-0.85	13	-8	-1.8	68	-14	-1.4	6.4	-5.4	-1.5
9/10/19	98	-17	-1.8	7.0	-7.0	-0.52	6.0	-7.5	-0.25	11.5	-9.5	-0.46	70	-11.5	-0.82	13	-7	-1.7	67	-13	-1.4	6.2	-5.2	-1.4
11/26/19	85	-22	-1.6	5.0	-14.0	-0.48	6.0	-5.0	-0.27	11.0	-10.0	-0.47	70	-12.5	-0.99	15	-9	-2.2	87	-19	-1.7	6.9	-5.0	-1.4

Table 1
General System Operating Parameters
Bethpage Park Soil Gas Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Bethpage, New York

	DW	(S Param	erara	DW-	10 Param	eters	D.M.	45 Param	State	ĐW-	40 Param	eters	DW-	SS Parram	etere	8377	SS Pairsin	eters	DW.	28 Param	eters	DW.	ZID Param	eters
	2 4 2 4 2 4 3 4 3 4	Maritolo	Valling 1	ow Rate at Manifold	Manifold	Wellhead	ow Rate at Manifold	Manifold at	Wollhoad	low Rate at Manifold	Nami of A	MONTH OF THE PROPERTY OF THE P	low Rate at Manifold	Actium at Manifold	Vacilities	ow Pate at Marifold	Marine and American		low Pate at Manifold	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Mark Falls	Married	
Date	entre de la contraction de la		107	sefm	100	love.	Carte	1070	1970	5 9 8 7 7	3 = 1970	litro	2000	1070	iwe	2 G	ive.	1076	E Solin	lwc.	iwe	Series Series		
3/20/19	100	-24	-2.6	6.4	-3.0	-2.0	60	-15	-1.7	11.0	-6.5	-0.83	75	-24	-2.3	65	-20	-3.0	40	-30	-2.3	35	-20	-2.2
6/27/19	67	-21	-1.6	5.2	-3.0	-1.6	83	-16	-1.1	7.5	-7.0	-0.74	77	-20	-2.4	40	-13	-1.6	49	-32	-2.5	39	-23	-2.5
9/10/19	74	-19	-1.7	5.1	-3.0	-1.3	78	-16	-1.6	7.5	-5.5	-0.73	55	-15	-1.7	38	-13	-1.6	48	-32	-2.5	38	-23	-2.5
11/26/19	90	-21	-2.1	5.1	-3.0	-1.8	82	-16.5	-1.8	7.0	-6.0	-0.76	68	-21	-2.3	37	-10	-1.6	29	-21	-1.6	39	-24	-2.6

Table 1
General System Operating Parameters
Bethpage Park Soil Gas Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Bethpage, New York

	814	05 Rava	meners	DW-11	SPara	neters		al Oni		Condensate Wate Collected ⁽¹⁾	r Blower	Parame 280	iors Ele	Slower	Parame 388	ears Ele-	Blower	Paramel 400	ero BL.		Combi	ned Efficien	i Paramet	ers
	Manager	Man		Manifold at Manifold at Manifold at American Ame	Vertical	Welling	Milliont	Minent	100	influent ST-510	Vacuum	Marie	Blower Speed	H H H H H H H H H H H H H H H H H H H	Pleaser.	Blower Speed		in and a second	3 To 10 E	Total Efficient	H 44	Heat Exchanger Influent Temp.		Heal Exchanger Efficent Temp
Date	scim	herc	1996	Selin	EM C	PW C	ive	ivec	FUEC	Gallons	lvec	144 C	Hz	Nec	PMC	Hz	ive	ive	Hz	sefm	ppmv		NV C	
3/20/19	50	-18	-2.2	24 ⁽⁵⁾	-35	-0.75	-45	NA	NA	105	-58.0	-1.0	59	NA	NA	NA	NA	NA	NA	715	0.1	103	2.0	91
6/27/19	35	-14	-1.5	35	-23	-2.5	-44	NA	NA	60	-47.0	-4.0	59	NA	NA	NA	NA	NA	NA	670	8.0	120	2.0	111
9/10/2019 ⁽⁶⁾	34	-14	-1.9	30	-26	-2.8	-41.5	NA	NA	0	-44.0	NM ⁽⁷⁾	59	NA	NA	NA	-5	14	60	1516	0.1	125	13.0	111
11/26/19	35	-18	-1.9	25 ⁽⁸⁾	-35	-0.5	-43	NA	NA	140	-46.4	-14.1	59	NA	NA	NA	-5	12	60	1920	0.0	117	12.0	106

Table 1 General System Operating Parameters Bethpage Park Soil Gas Containment System

Operable Unit 3 (Former Grumman Settling Ponds)

Bethpage, New York

Abbreviations, Notes, and Units:

DW Depressurization Well

NA Not Applicable NM Not Measured

- 1. Total gallons of water accumulated at storage tank ST-510 per quarter are based on storage tank level and condensate removed as documented in site operator condensate discharge logs.
- 2. Total effluent air velocity in feet per minute was measured using a hand-held anemometer at the stack effluent location. The total effluent flow rate in scfm was calculated by multiplying the measured air velocity by the pipe area, the ratio of the standard air temperature to the measured air temperature, and the ratio of the measured air pressure.
- 3. Monitoring point was confirmed to be in vacuum on a second event on April 11, 2019 following condensate removal and system rebalancing.
- 4. Monitoring point was confirmed to be in vacuum on a third event on April 25, 2019 due to calibration maintenance during the April 11, 2019 event.
- 5. Reading taken by site operator on March 18, 2019.
- 6. On 08/14/19, the system began operating with two active blowers to increase system effluent flow rate.
- 7. Pressure not measured due to broken BL-200 effluent pressure gauge.
- 8. Reading estimated due to gauge variability.

°F degrees Fahrenheit

Hz Hertz

iwc inches of water column

scfm standard cubic feet per minute

Table 2
Summary of Induced Vacuum Readings at Compliance Monitoring Points
Bethpage Park Soil Gas Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Bethpage, New York

Well ID:	DW	-75	D144-7/D	B)W-3/S	07/7-310	DW	-5.5	0)//-510		DW-15		DW-1D	DVV-40	DVA	less:	DW	-28	DW	-20	DW-	-11S
MP ID		VMMC	718117	VMVVC	111111	111	VISIO		VALVE	VINEC			VISIO		VINE	71.0	VMMC		VMMC		7.11
	144	148	140	118	12.0	154	158	150	3.4	3.5	3.0	3D	160	19.4	168	7.A	78	10.0	170	18.4	188
Date		WC	WC	14.0		We	W.C	1WC	We	1940	IW.C				100	14.0	EW C	ive	l W C		
03/20/19	-0.08 ⁽³⁾	-0.12	-0.16	-0.10	-0.11	-0.11	-0.11	-0.15 ⁽³⁾	-0.15	-0.17	-0.15	-0.14	-0.19	-0.17	-0.18	-1.53 ⁽⁵⁾	-0.43	-0.15	-0.14	-0.11 ⁽⁴⁾	-0.11
06/27/19	-0.12	-0.21	-0.21	-0.12	-0.12	-0.11	-0.11	-0.11	-0.13	-0.14	-0.14	-0.16	-0.82	-0.43	-0.87	-0.55	-0.38	-0.21	-0.20	-0.13	-0.42
09/10/19	-0.11	-0.19	-0.20	-0.10	-0.10	-0.12	-0.12	-0.13	-0.11	-0.13	-0.14	-0.13	-0.22	-1.78	-0.14	-0.14	-0.14	-0.17	-0.22	-0.10	-0.13
11/26/19 ⁽⁵⁾	-0.95	-0.19	-0.19	-0.12	-0.11	-0.12	-0.10	-0.07	-0.14	-0.14	-0.15	-1.41	-0.25	-0.20	-0.22	-0.10	-0.40	-0.25	-0.26	-0.03	-0.03
Time Weighted Rolling Average ⁽¹⁾	-0.25	-0.17	-0.18	-0.11	-0.11	-0.11	-0.11	-0.12	-0.13	-0.15	-0.15	-0.38	-0.35	-0.52	-0.34	-0.78	-0.36	-0.19	-0.19	-0.10	-0.17

Grass Average	
11/26/19	-0.23

DW Depressurization Well
iwc inches of water column
VMWC Vapor Monitoring Well Cluster

- 1. Compliance goal is -0.1 iwc of vacuum at all compliance monitoring points, based on a twelve-month rolling average. Time weighted rolling average calculated by summing the products of the instantaneous induced vacuum readings and the number of days between readings for a 12-month monitoring period, and dividing by the total time period between the first and last quarterly induced vacuum readings.
- 2. Gross average compliance points calculated by summing the induced vacuum values for the noted monitoring event and dividing by the number of readings.
- 3. Monitoring point was confirmed to be in vacuum on a second event on April 11, 2019 following condensate removal and system rebalancing.
- 4. Monitoring point was confirmed to be in vacuum on a third event on April 25, 2019 following instrument calibration maintenance during the April 11, 2019 event.
- 5. Monitoring point vacuum was collected before condensate removal and system rebalancing.

Table 3
Total Effluent Vapor Sample Analytical Results
Bethpage Park Soil Gas Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Bethpage, New York

Sompound	Sample D	VSP-80	VSP-601	VS 2.00	V S P - 60 f
units in µg/m²)	Sample Date	3/20/2019	6/27/2010	3/10/2013	11/26/2011
(C)(C)(8) (8) (8) (8)	CASILO				
,1,1-Trichloroethane	71-55-6	5.5	4.9	4.8	3.9
,1-Dichloroethane	75-34-3	6.1	5.3	3.6	3.7
,1-Dichloroethene	75-35-4	1.1	0.79	< 0.16	< 0.16
,2-Dichloroethane	107-06-2	< 1.6	< 0.81	< 0.81	< 0.81
Benzene	71-43-2	1.8	< 0.64	< 0.64	0.7
sis-1,2-Dichloroethene	156-59-2	189	324	79.7	67.8
- etrachloroethene	127-18-4	31	8.8	6.2	3.8
oluene	108-88-3	15	< 0.75	1.8	< 0.75
rans-1,2-Dichloroethene	156-60-5	1.4 J	1.8	1.2	1.1
richloroethylene	79-01-6	254	286	173	126
/inyl chloride	75-01-4	1.0	0.54	< 0.10	< 0.10
(ylenes - O	95-47-6	< 1.7	< 0.87	< 0.87	< 0.87
Kylenes - M,P	1330-20-7	0.83 J	< 0.87	0.52 J	< 0.87
Subtotal Project VOCs		507	632	271	207
ion-Project VOCs					
,1,2,2-Tetrachloroethane	79-34-5	< 1.4	< 0.69	< 0.69	< 0.69
,1,2-Trichloroethane	79-00-5	3.2	< 0.55	< 0.55	< 0.55
,2-Dichloropropane	78-87-5	< 1.8	< 0.92	< 0.92	< 0.92
,3-Butadiene	106-99-0	< 0.88	< 0.44	< 0.44	< 0.44
-Chloro-1,1-difluoroethane (Freon 142B)	75-68-3	53.8	106	58.8	19
2-Butanone	78-93-3	< 1.2	0.83	1.4	< 0.59
2-Hexanone	591-78-6	< 1.6	< 0.82	< 0.82	< 0.82
-Methyl-2-Pentanone	108-10-1	< 1.6	< 0.82	0.70 J	< 0.82
Acetone	67-64-1	2.6	4.0	26.8	4.5
Bromodichloromethane	75-27-4	< 1.3	< 0.67	< 0.67	< 0.67
Bromoform	75-25-2	< 0.83	< 0.41	< 0.41	< 0.41
Bromomethane	74-83-9	< 1.6	< 0.78	< 0.78	< 0.78
Carbon Disulfide	75-15-0	< 1.2	< 0.62	< 0.62	< 0.62
Carbon Tetrachloride	56-23-5	59	0.75	0.75	< 0.25
Chlorobenzene	108-90-7	< 1.8	< 0.92	< 0.92	< 0.92
Chlorodibromomethane	124-48-1	< 1.7	< 0.85	< 0.85	< 0.85
Chloroethane	75-00-3	< 1.1	< 0.53	< 0.53	< 0.53
Chlorodifluoromethane (Freon 22)	75-45-6	< 1.4	1.1	< 0.70	0.88
Chloroform	67-66-3	62.5	8.8	4.9	7.8
Chloromethane	74-87-3	< 0.83	< 0.41	< 0.41	< 0.41
is-1,3-Dichloropropene	10061-01-5	< 1.8	< 0.91	< 0.91	< 0.91
Dichlorodifluoromethane (Freon 12)	75-71-8	2.2	2.1	< 0.99	< 0.99
Ethylbenzene	100-41-4	< 1.7	< 0.87	< 0.87	< 0.87
/lethylene Chloride	75-09-2	2.0	0.97	1.0	< 0.69
lethyl Tert-Butyl Ether	1634-04-4	< 1.4	< 0.72	< 0.72	< 0.72
Styrene	100-42-5	< 1.7	< 0.85	< 0.85	< 0.85
rans-1,3-Dichloropropene	10061-02-6	< 1.8	< 0.91	< 0.91	< 0.91
richlorofluoromethane (Freon 11)	75-69-4	1.3	1.8	< 0.56	1.1
richlorotrifluoroethane (Freon 113)	76-13-1	< 1.5	< 0.77	< 1.5	< 0.77
Subtotal Non-Project VOCs		187	126	94	33

Abbreviations, Notes, Qualifiers, and Units on last page.

Table 3
Total Effluent Vapor Sample Analytical Results
Bethpage Park Soil Gas Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Bethpage, New York

Abbreviations, Notes, Qualifiers, and Units:

CAS No. Chemical Abstracts Service list number

ELAP Environmental Laboratory Approval Program

NYSDOH New York State Department of Health

NYSDEC New York State Department of Environmental Conservation.

TVOC Total Volatile Organic Compounds

USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound

1. Vapor samples collected by Arcadis and submitted to a NYSDOH ELAP certified laboratory for VOC analyses per Modified USEPA Method TO-15.

2. TVOC determined by summing individual detections and rounding to the nearest whole number.

4.8 Bolding indicates that the analyte was detected at or above laboratory reporting limit

< 0.16 Compound not detected above its laboratory quantification limit

J Compound detected below laboratory reporting limit; result is estimated

μg/m³ micrograms per cubic meter

Sample ID: Sample Date ¹ : Units: Tentatively Identified Compounds ²		VSP-601 6/27/2019 ppbv		VSP - 681 11/26/2019 ppbv
Carbon Dioxide	1,300 JB	29 JNB	87 JB	12 JNB
Alkane	ND	ND	ND	5.4 J

Abbreviations, Notes, Qualifiers, and Units:

ND Not Detected

ELAP Environmental Laboratory Approval Program

NYSDOH New York State Department of Health
USEPA U.S. Environmental Protection Agency

VOC Volatile Organic Compound

1. Vapor samples collected by Arcadis on the dates shown and submitted to a NYSDOH ELAP certified laboratory for VOC analyses per Modified USEPA Method TO-15.

2. Tentatively identified compounds are identified based on review of mass spectrometry results via a comprehensive library search of all organic compounds.

B Indicates analyte found in associated method blank

J Indicates an estimated value

JN Compound tentatively identified, concentration is estimated

ppbv parts per billion by volume

Table 5
Air Quality Impact Analysis
Bethpage Park Soli Gas Containment System
Operable Unit 3 (Former Grumman Settling Ponds)
Bethpage, New York

Toxic Air Contaminant ⁽⁴⁾	CAS#	VSP-601 Vapor Effluent (µg/m²) 11/26/2019	E lb/yr	mission Rat lb/hr	e [†] 9/5	Scaled Impact - Hourly ² (µg/m ²)	Scaled Impact Annual (µg/m²)	steci (pg/m ²)	AGC ¹ (µg/m ²)	% of Sep	% of Acto
Project VOSs											
1,1,1 - Trichloroethane	71-55-6	3.9	2.5E-01	2.8E-05	3.5E-06	1.6E-03	7.1E-05	9,000	5,000	0.0%	0.0%
1.1 - Dichloroethane	75-34-3	3.7	2.3E-01	2.7E-05	3.3E-06	1.5E-03	6.7E-05	NS	0.63	NS	0.0%
Benzene	71-43-2	0.7	4.4E-02	5.0E-06	6.3E-07	2.9E-04	1.3E-05	1300	0.13	0.0%	0.0%
cis- 1,2-Dichloroethene	156-59-2	67.8	4.3E+00	4.9E-04	6.1E-05	2.8E-02	1.2E-03	NS	63	NS	0.0%
Tetrachloroethene	127-18-4	3.8	2.4E-01	2.7E-05	3.4E-06	1.6E-03	6.9E-05	300	4	0.0%	0.0%
trans- 1,2-Dichloroethene	156-60-5	1.1	6.9E-02	7.9E-06	9.9E-07	4.6E-04	2.0E-05	NS	63	NS	0.0%
Trichloroethene	79-01-6	126	7.9E+00	9.0E-04	1.1E-04	5.3E-02	2.3E-03	20	0.2	0.3%	1.1%
Non-Project VCCs											
1-Chloro-1,1-difluoroethane (Freon 142B)	75-68-3	19	1.2E+00	1.4E-04	1.7E-05	8.0E-03	3.4E-04	NS	50,000	NS	0.0%
Acetone	67-64-1	4.5	2.8E-01	3.2E-05	4.1E-06	1.9E-03	8.1E-05	180,000	30,000	0.0%	0.0%
Chlorodifluoromethane (Freon 22)	75-45-6	0.88	5.5E-02	6.3E-06	8.0E-07	3.7E-04	1.6E-05		50,000		0.0%
Chloroform	67-66-3	7.8	4.9E-01	5.6E-05	7.1E-06	3.3E-03	1.4E-04	150	15	0.0%	0.0%
Trichlorofluoromethane (Freon 11)	75-69-4	1.1	6.9E-02	7.9E-06	9.9E-07	4.6E-04	2.0E-05	9,000	5,000	0.0%	0.0%

Table 5 Air Quality Impact Analysis

Bethpage Park Soll Gas Containment System Operable Unit 3 (Former Grumman Settling Ponds)

Bethpage, New York

Abbreviations, Notes, and Units:

AGC Annual Guideline Concentration

CAS# Chemical Abstracts Service Registry Number

DAR-1 Division of Air Resources-1

NS None Specified

NYSDEC New York State Department of Environmental Conservation

SGC Short-term Guideline Concentration

VSP Vapor Sampling Point

1. Emission rate calculated based on VSP-601 effluent concentration and an exit air flow rate of 1920 ft³/min for 11/26/19.

TCE (lb/hr) = TCE [$\mu g/m^3$] x Air Flow Rate [ft^3/min] x (1 $m^3/35.3147$ ft^3) x (60 min/hr) x (0.000001 g/1 ug) x (0.0022 lb/g)

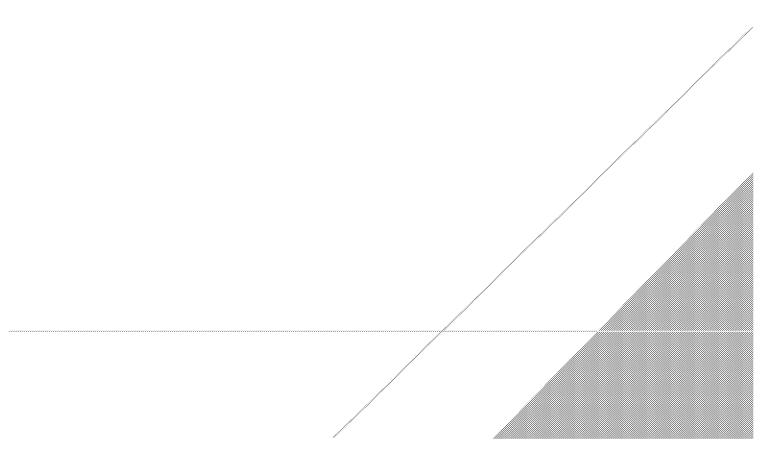
 $lb/yr = lb/hr \times 8,760 hrs/yr$

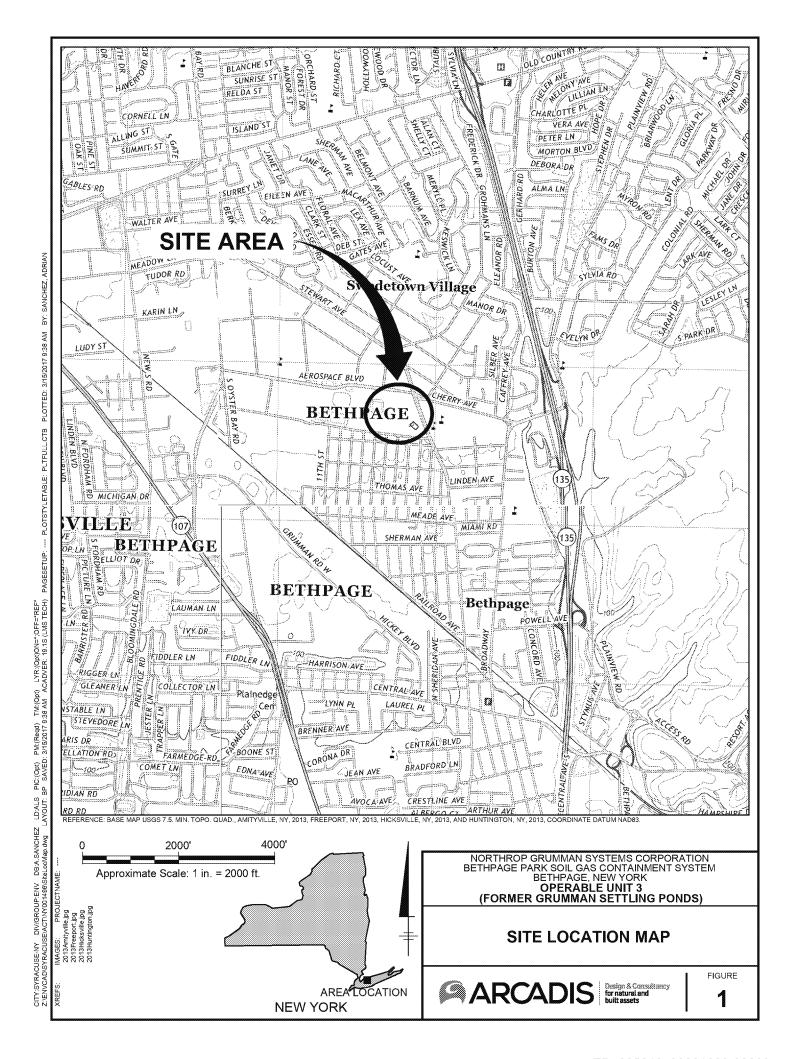
 $g/s = lb/hr \times 1 hr/ 3,600 sec \times 453.59 g/lb$

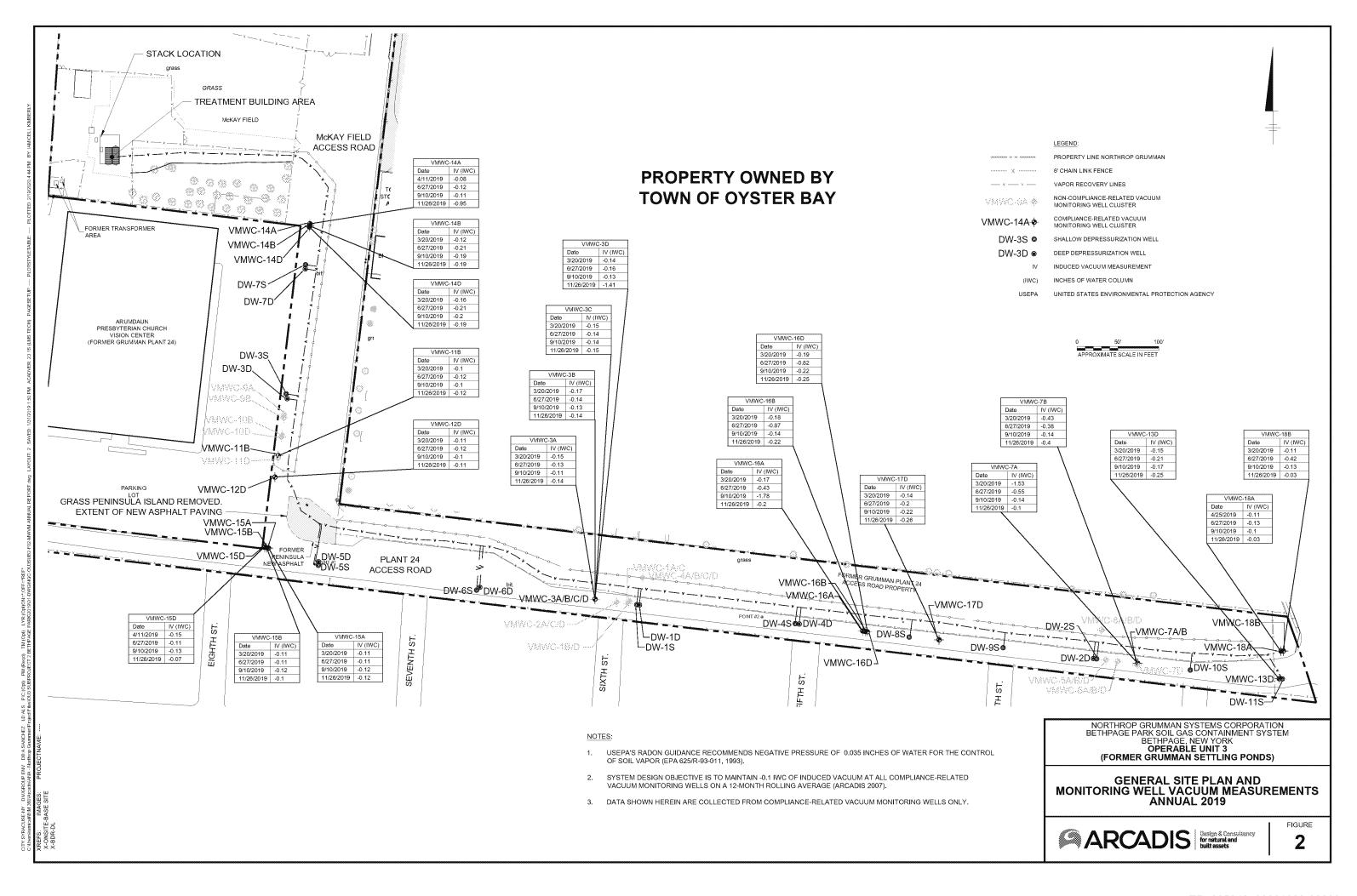
2. Ambient impact based on AERMOD modeling using normalized rate of 1 g/s is scaled to the actual emission rate of the pollutant. Modeling was performed using the representative meteorological data from the nearest station (Farmingdale) for the years 2011 through 2015. The maximum impact from all the years was used for the calculations.

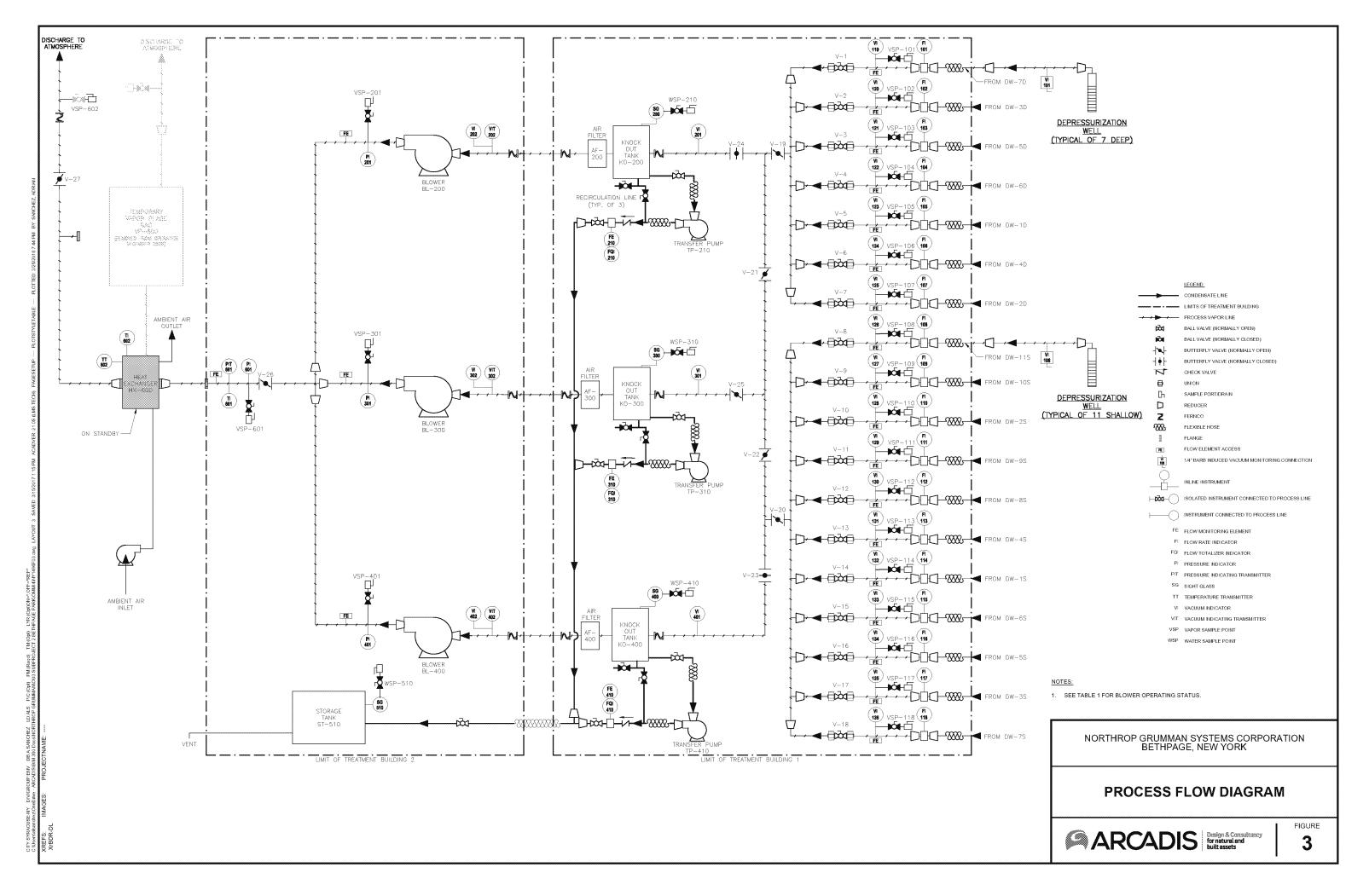
Scaled hourly impact ($\mu g/m^3$) = AERMOD predicted hourly ambient impact at 1 g/s ($[\mu g/m^3]/[g/s]$) x Actual emission rate (g/s) Scaled annual impact ($\mu g/m^3$) = AERMOD predicted annual ambient impact at 1 g/s ($[\mu g/m^3]/[g/s]$) x Actual emission rate (g/s)

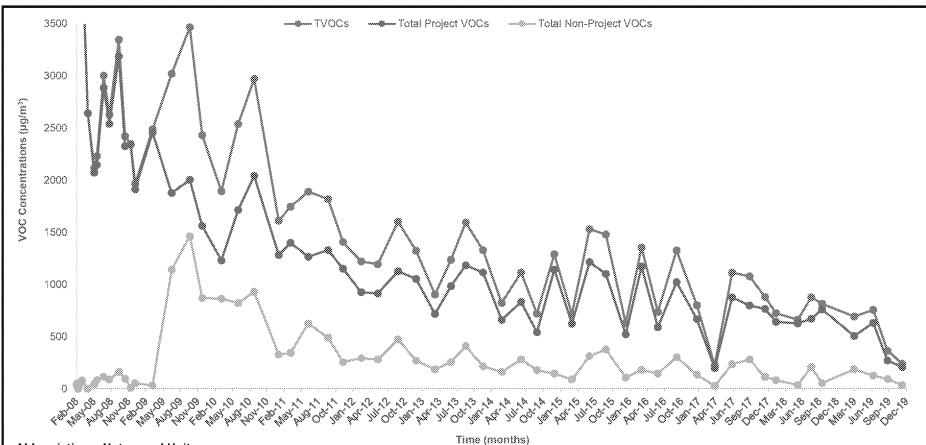
	olized Ambient Impact at 1 g/s Annual ([µg/m²]/[g/s])
462.83	20.02


- 3. Short-term and annual guideline concentrations specified in the NYSDEC DAR-1 AGC/SGC tables revised August 10, 2016.
- 4. Only contaminants with detected concentrations are included in the table.


ft³/min cubic feet per minute g/s grams per second


μg/m³ micrograms per cubic meter


lb/hr pounds per hour


FIGURES

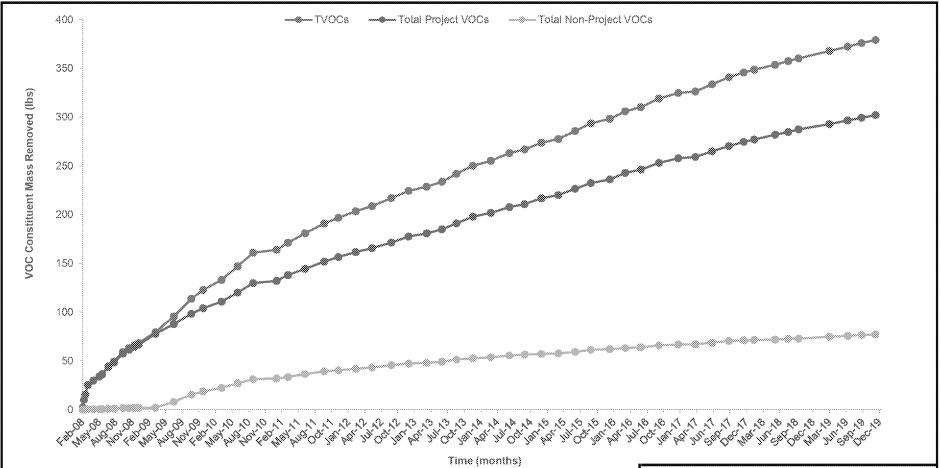
VOCs = Volatile Organic Compounds TVOCs = Total VOCs detected

Total Project VOCs = Sum of 1,1,1-trichloroethane; 1,1-dichloroethane; 1,2-dichloroethane; 1,1-dichloroethene; tetrachloroethene; trichloroethene; vinyl chloride; cis-1,2-dichloroethene; trans-1,2-dichloroethene; benzene; toluene; and total xylenes.

Total Non-Project VOCs = Sum of VOCs that are not Project VOCs.

- 1. Samples were collected at Vapor Sample Port-601 (VSP-601); refer to Figure 3 of this OM&M report for the location of VSP-601.
- 2. Results prior to April 16, 2008 are not shown to improve figure clarity. The TVOC and Total Project VOC concentrations are greater than 3,500 μg/m³. See previous reports for full data set.
- 3. The sample results from December 3, 2010 are not consistent with historical data and the results are excluded from this figure. The TVOC concentration for December 3, 2010 was 13 µg/m³.

μg/m³ = micrograms per cubic meter


NORTHROP GRUMMAN SYSTEMS CORPORATION BETHPAGE PARK SOIL GAS CONTAINMENT SYSTEM BETHPAGE, NEW YORK, OPERABLE UNIT 3 (FORMER GRUMMAN SETTLING PONDS)

SOIL GAS VOC CONCENTRATIONS

FIGURE

4

VOCs = Volatile Organic Compounds

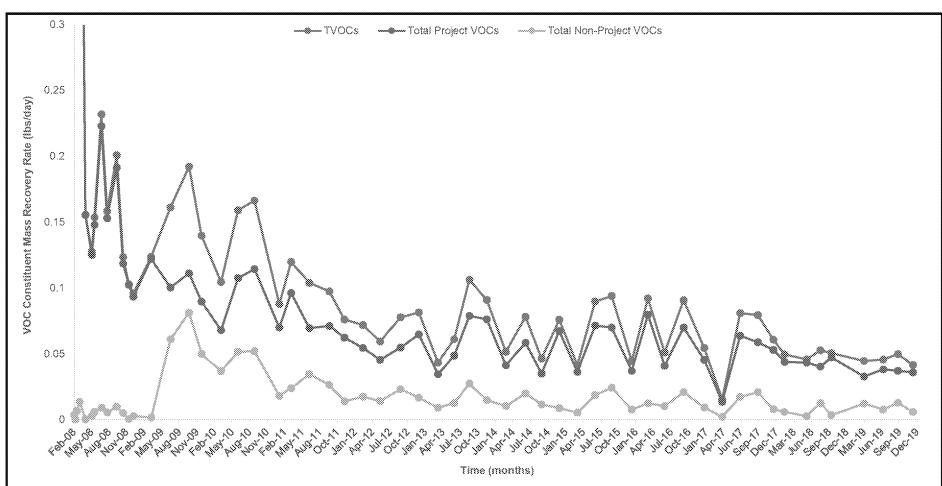
TVOCs = Total VOCs detected

Total Project VOCs = Sum of 1,1,1-trichloroethane; 1,1-dichloroethane; 1,2-dichloroethane; 1,1-dichloroethene; tetrachloroethene; trichloroethene; vinyl chloride; cis-1,2-dichloroethene; trans-1,2-dichloroethene; benzene; toluene; and total xylenes.

Total Non-Project VOCs = Sum of VOCs that are not Project VOCs.

1. The sample results from December 3, 2010 are not consistent with historical data and the results are excluded from this figure.

lbs = pounds


NORTHROP GRUMMAN SYSTEMS CORPORATION
BETHPAGE PARK SOIL GAS CONTAINMENT SYSTEM
BETHPAGE, NEW YORK, OPERABLE UNIT 3
(FORMER GRUMMAN SETTLING PONDS)

CUMULATIVE TOTAL, PROJECT, AND NON-PROJECT VOC MASS REMOVED

FIGURE

5

VOCs = Volatile Organic Compounds TVOCs = Total VOCs detected

Total Project VOCs = Sum of 1,1,1-trichloroethane; 1,1-dichloroethane; 1,2-dichloroethane; 1,1-dichloroethene; tetrachloroethene; trichloroethene; vinyl chloride; cis-1,2-dichloroethene; trans-1,2-dichloroethene; benzene; toluene; and total xylenes.

Total Non-Project VOCs = Sum of VOCs that are not Project VOCs.

- 1. Results prior to April 16, 2008 are not shown to improve figure clarity. The TVOC and Total Project VOC concentrations are greater than 0.3 lbs/day. See previous reports for full data set.
- 2. The sample results from December 3, 2010 are not consistent with historical data and the results are excluded from this figure. The TVOC concentration for December 3, 2010 was 13 µg/L.

lbs/day = pounds per day

NORTHROP GRUMMAN SYSTEMS CORPORATION BETHPAGE PARK SOIL GAS CONTAINMENT SYSTEM BETHPAGE, NEW YORK, OPERABLE UNIT 3 (FORMER GRUMMAN SETTLING PONDS)

VOC MASS RECOVERY RATES

FIGURE

6

Arcadis of New York, Inc.

Two Huntington Quadrangle Suite 1S10 Melville, New York 11747 Tel 631 249 7600 Fax 631 249 7610

www.arcadis.com